BJ PS - A cc ep ted M an us cri pt Fitting mixed models to messy longitudinal data : a case study involving estimation of post mortem intervals Julio
نویسندگان
چکیده
Non-linear mixed models are useful in many practical longitudinal data problems, especially when they are derived as solutions to differential equations generated by subject matter theoretical considerations. When this underlying rationale is not available, practitioners are faced with the dilemma of choosing a model from the numerous ones available in the literature. The situation is even worse for messy data where interpretation and computational problems are frequent. This is the case with a pilot observational study conducted at the School of Medicine of the University of São Paulo in which a new method to estimate the time since death (post-mortem interval PMI) is proposed. In particular, the attenuation of the density of intra-cardiac hypostasis (concentration of red cells in the vascular system by gravity) obtained from a series of tomographic images was observed in the thoraces of 21 bodies of hospitalized patients with known time of death. The images were obtained at different instants and not always at the same conditions for each body, generating a set of messy data. In this context, we consider three ad hoc models to analyse the data, commenting on the advantages and caveats of each approach.
منابع مشابه
An Improvement on the Estimation of River ECs using ANN Models and ANFIS involving PCA Analysis, Case Study; Nekarood River, IRAN
Estimation of changes in water quality parameters including electrical conductivity along a river is essential. In this paper, ANN and ANFIS-SC were used to estimate the ECs of the Nekarood River, North Iran, from 1992-2013. The study period was divided into two periods of dry and wet, based on the river flow rate. Then, Using the PCA, the effective parameters in EC estimation were determined...
متن کاملAnalysis of Dynamic Longitudinal Categorical Data in Incomplete Contingency Tables Using Capture-Recapture Sampling: A case Study of Semi-Concentrated Doctoral Exam
Abstract. In this paper, dynamic longitudinal categorical data and estimation of their parameters in incomplete contingency tables are evaluated. To apply the proposed method, a study has been conducted on the data of the semi-concentrated doctoral exam of the National Organization for Educational Testing (NOET). The results of studies such as the obtained confidence intervals and calculating t...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملFitting Second-order Models to Mixed Two-level and Four-level Factorial Designs: Is There an Easier Procedure?
Fitting response surface models is usually carried out using statistical packages to solve complicated equations in order to produce the estimates of the model coefficients. This paper proposes a new procedure for fitting response surface models to mixed two-level and four-level factorial designs. New and easier formulae are suggested to calculate the linear, quadratic and the interaction coeff...
متن کامل